IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

967

Application of Davidenko’s Method to the
Solution of Dispersion Relations in Lossy
Waveguiding Systems

SALVADOR H. TALISA, MEMBER, IEEE

Abstract —Davidenko’s method is a reduction of Newton’s method for
the numerical solution of n-coupled nonlinear algebraic equations into
n-coupled first-order differential equations in a dummy variable. This
algorithm is useful for the solution of dispersion relations of electromag-
netic waves propagating in lossy waveguiding structures, particularly layered
geometries containing one or more gyrotropic layers. In this class of
problems, Newton-based numerical techniques are not always satisfactory
and Davidenko offers an alternative which is efficient and reliable and
which relaxes the extent of the restriction placed on the initial guess to be
sufficiently close to the solution. Presented are Davidenko’s method, its
application to lossy-waveguide dispersion relations, and an example where
the algorithm was applied successfully.

I. INTRODUCTION

ROBLEMS DEALING with electromagnetic-wave

propagation in multilayered media usually require
numerical solutions of the dispersion relation which leads
to the modal spectrum (w — 8 diagram) of the waveguiding
geometry being studied. These dispersion relations, al-
though in general are complicated expressions, are also
mathematically well behaved. That is, in the frequency
intervals of interest, they are smooth and have smooth
derivatives except at a finite number of points. Therefore,
the use of simple and well-developed numerical techniques
such as Newton’s method and others [1] suffices in many
cases of interest.

Complications can arise, however, when the need to
include losses in the mathematical formulation of the prob-
lem make the dispersion relation a complex transcendental
equation in a complex variable. In this case, an extension
of Newton’s method into the two-dimensional case could,
in principle, be used.

Indeed, programs based on Newton’s method are avail-
able [1], [2] for the solution of » nonlinear algebraic
equations in n unknowns such as those from the IMSL
library [3].

These methods, however, do not always produce satisfac-
tory results. The author has found empirically that this is
particularly so when the multilayer structure under study
includes gyrotropic layers, ie., gyroelectric, such as a
solid-state plasma (semiconductor or metal), or
gyromagnetic, such as a ferrite material [4]-[7].
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In this paper, an alternative method is presented which,
although expandable to the n-dimensional case, has proven
very successful when »=2, namely, in the case of a
complex transcendental dispersion relation in a complex
variable. The method is generally attributed to Davidenko
[8), and its usefulness has recently been brought to the
attention of the chemical engineering community by W. E.
Schiesser [9].

No attempt is made here to find the reasons for the
failure of other algorithms in the class of problems men-
tioned above or to make a rigorous comparison between
them and Davidenko’s. Davidenko’s method is simply re-
commended here whenever readily available routines based
on Newton or quasi-Newton methods fail.

II. DAVIDENKO’S METHOD

The basic idea behind Davidenko’s method is to reduce
Newton’s method for a system of n nonlinear algebraic
equations in n unknowns to a set of » first-order ordinary
differential equations (ODE’s) in a dummy variable ¢.

The basic ideas underlying Davidenko’s method can best
be explained by considering. the one-dimensional case [9].
From a practical point of view, it must be said that the
complications inherent in the use of this algorithm over,
say, Newton’s method are only justified in the case of two
or more systems of equations. In the one-dimensional case,
root-finders based on derivative-free algorithms such as the
secant or the bisection methods are faster and easier to
implement and many times even preferable to Newton’s
method.

Let

f(x)=0 1)

be a nonlinear algebraic equation in the variable x. New-
ton’s method applied to this equation is simply

df(x,)
dx Axn__f(xn) (2)
where Ax, is a correction term for x,
xn+1=xn+Axn (3)

and n denotes the iteration number. That is, we expect that
the point x,,, is closer to the solution than the point x,.
Substituting (3) in (2), we obtain the more familiar form of
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Fig. 1. Starting at a certain point x,,, Newton’s method gives us x,,, ;.

However, as in the case illustrated here, a successive application of
Newton’s method does not take us nearer the solution but to a point
(x,,+,) farther away. In other words, the algorithm does not converge
unless our initial guess happens to be in a region very close to the
solution.

Newton’s method

f(x,)

0 (x,), @

Xpy1=Xp—

or

df(x,) _ 0-f(x,)

dx xn+1_xn

: (5)

Equation (5) is just the equation of a straight line
through the points (x,, f(x,)) and (x,,;,0). In other words,
the next point in the iteration process, i.e. x,, ,, is taken to
be the intersection of the straight line tangent to f(x) at
the point x, with the x-axis (see Fig. 1). Hence, Newton’s
algorithm has a step size Ax,, defined by (2).

However, as is the case of Fig. 1, the initial guess may
lay outside the region where Newton’s method converges.
Or, in other words, the correction term Ax, may be
excessive for the initial guess point chosen because
df(x,)/dx (the Jacobian determinant in the n-dimensional
case) is too small, as indicated by (4). This restriction
placed on the initial guess of having to lie in a region
sufficiently small around the solution can be relaxed if we
reduce the size of the correction Ax, by including a factor
€ in (2), i.e.,

df(x,)
dx

Ax,=—¢f(x,) (6)

where 0 < ¢ <1. Rewriting this equation as

Ax, iy
e = Flx,)/dx )

and taking the limit when € — 0, Ax, is then replaced by a
differential correction term, assuming that f(x) is continu-
ous in the vicinity of x,. That is, (7) becomes (relabelling €
as dt)

dx _ f(x)

a = dfjdx (8)

where ¢ is now a scalar independent variable which is
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introduced merely to construct the algorithm and has no
basis in the original problem, Equation (1).

With these considerations in mind we can now go back
to Fig. 1, where we see that we have devised a way to
approach a root of f(x)=0 from an initial guess (the
initial condition x(0) of differential equation (8)) in infini-
tesimal steps of size dx corresponding to increments d¢ of
the dummy variable ¢, arriving at the root after a long
“time” ¢, i.e., for 1 — co. Thus, the original problem f(x)
= 0 is a particular case of (8) for ¢ — co. That is, the value
of x which satisfies f(x)=0 also satisfies (8) for ¢ — oco.
Indeed, from(8), we see that

dx __ f(x) __dx
= " df/dx - d(inf)

which implies that

f(x)=4e™
A being an integration constant. For ¢ — oo, we have
f(x)=0.
Equation (8) can be extended to the n-dimensional case,
namely,

dx —1
L ()7 () ©)
where J is the Jacobian matrix for the » nonlinear alge-
braic set of equations in n unknowns

f1(x1»x2 T xn) =0
f2(x17 Xy ‘xn) =0

fn('x15x2 e ‘xn) = O

or, in matrix form,

f(x)=0

with x = (x3, x5,..., x,)7,

matrix.

Equation (9) is the basic form of Davidenko’s method
and can be considered as a system of s initial-value
ordinary differential equations that can be integrated sub-
ject to an initial condition x(0). This initial condition
vector is the counterpart of the initial trial solution in
Newton’s method [5], [9].

From the point of view of the implementation of this
algorithm into a computer program, it must be noted that
there exist many successful algorithms and published com-
puter programs available [1]-{3], [9] for solving systems of
first-order ordinary differential equations. The asymptotic
solutions at # — oo could be found to the desired degree of
precision by comparing the difference between the results
of integration up to two consecutive intervals, i.e., the
quantity |x(z+ A7)—x(¢)| to a number 8§ representing the
desired precision. When

lx(z+At)~x(¢)|< 8
the integration can be stopped.

It must be added here that the algorithm has exponential
convergence with respect to ¢ [9].

where T stands for transposed

"
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III. APPLICATION OF DAIVDENKO’S METHOD TO A
Lossy ELECTROMAGNETIC WAVE

PROPAGATION PROBLEM

The dispersion relation of a lossy waveguiding system, a
complex transcendental equation with complex roots, can
be generally expressed as

F(w;v)=0 (10)
with v = a + jjB, where the unknowns are « and B, the real
and imaginary parts of the propagation constant vy, respec-
tively.

We wish to solve (10) for different values of the parame-
ter w, the angular frequency. Equation (10) can be treated
as a set of two nonlinear algebraic equations in two un-
knowns by writing it as the set

Re[F(w;v)] =G(w;a,8)=0

Im[F(w;v)] = H(w; &, B) =0. (11)
In this case, it is possible to express the Jacobian matrix of
the system and its inverse in closed form, since the disper-
sion function F(w;vy) is an analytic complex function on

the y-plane except at a finite number of points. The
Cauchy-Riemann relations are then satisfied, that is, from
(11)
G,=H,
GB = Ha

(12)

where G, = G/ da, etc. The Jacobian matrix is

G, G
J:
H, H,
or, using (12)
G G
—_— « B
J=1_ G, G, (13)

On the other hand, using the properties of analytic func-
tions (12), we have
Z—fEFy=Ga+jHa=Ga——jGB. (14)
That is
G,=Re|[F,]
Gg=—1Im [Fy] .

(15)

From (13) and (15), the determinant of the Jacobian matrix

18
det J=G? + G =|F,|?

(16)

and, using (15) and (16), the inverse Jacobian matrix is

S 1 G, _GB = 1 Re[FY] Im[FV]
et/ |G, G, | |EP|-Im[F] Re[E]|
(17)

We can now write the formal expression of Davidenko’s
method (9) with

x=(a,8)"
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Fig. 2. Five-region canonical waveguiding structure whose dispersion
relation was solved using Davidenko’s method.

and

f=@GH"

namely,

£l3)-- 1

or, using (11) and (17)

b I}#(Re[F]Re[Fy] +Im[F]Im[F,])
48 _ l;ylz(Re[F]Im[Fy]—Im[F]Re[Fy])-

(18)

Equation (18), a system of two coupled first-order ODE’s,
is the expression of the problem F(w;y)= 0 (10) in terms
of Davidenko’s algorithm. The solution of (18) for ¢ — o0
(large r) will give us a and B for a given frequency w to the
desired precision. Notice that the right-hand side of both
equations need only be expressed in terms of the dispersion
function F and its derivative with respect to v, F,. Fur-
thermore, F,, although a complicated expression, can al-
ways be written in closed form. The real and imaginary
parts of F and F, need not be found explicitly since they
will be calculated numerically. Equation (18) can then be
solved using any quality integrator with automatic step-size
adjustment [1]-[3], [9].

IV. ExAMPLE OF THE USE OF DAVIDENKO’S
METHOD

Davidenko’s method was tested in the case of a five-layer
waveguiding structure where one of the layers is gyro-
electric. The following example is included here for the
sake of completeness although it has already been pre-
sented in [7]. It is hoped, however, that the reader will find
its inclusion here convenient and the comments on the
method’s practical implementation useful. For more details
on the problem studied see [6] and [7].

Fig. 2 shows a diagram of the geometry studied. It is
assumed infinite in the y- and z-directions. Propagation of
electromagnetic waves is in the z-direction. The gyro-
electric layer is presumed to be a semiconductor biased by
a magnetic field ﬁo along the y-direction. It is char-
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Fig. 3. Sample dispersion diagram for the five-region canonical struc-

ture. Nonreciprocal device isolation. Forward propagation. Parameters:
@, =10, 0, =10"2, 7 =8x 10712,

€0=13 ¢, =4, e, =¢; €5 =1,

D =50 pm,D,=D; =100 um.

acterized by the dielectric tensor

£ 0 —Jn
e(w)=10 ¢ 0
jn 0 ¢

where £, {, and 5 are complex functions of frequency, the
biasing field, the carrier concentration, the dc dielectric
constant of the semiconductor and an imaginary term, the
carrier collision frequency, which accounts for the losses in
the semiconductor [6]. The other four regions in Fig. 2 are
isotropic dielectrics of different constants. The losses are
significant in this problem.

The dispersion relation is a complicated expression in
the complex variable y = a + jB, the propagation constant.
It has the form [7]

F(w; y) = 2kaDy

445 (R,eP 4 RoohD2) 1 ¢ kaD( RyekaD 4 R o FaDs)
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Other algorithms for integration of (18) could be used as
well. See, for example, the papers by W. E. Schiesser [9]
and by P. T. Boggs [10].

A sample calculation of the roots of (19) as a function of
frequency is presented in Fig. 3 for the case in which a
dielectric (e, = 4) layer is placed at a certain distance from
the semiconducting layer. Both regions are surrounded by
air. The parameters characterizing the semiconductor are
given in the figure caption. Their physical significance is
explained in [6].

Three modes or branches are depicted in the figures.
Higher order thickness modes were found in the region
@< f<f, and above f{® [6]. These are not included in
the figure. Each of the branches has an attenuation con-
stant and a phase constant. The straight line labeled &
corresponds to the electromagnetic-wave propagation in
vacuum.

The problem was solved rapidly and efficiently using
Davidenko’s method. Earlier attempts at solving this prob-
Iem using a quasi-Newton algorithm from the IMSL library
[3] (Muller’s method) were unsuccessful because of the
great difficulty of finding roots in most regions of the
w — B diagram. Furthermore, the initial guess was very
critical, and a great deal of time was spent trying different
ones in order to calculate only one point in the w— 8
diagram. These problems were completely eliminated with
Davidenko’s method, when only one initial guess in the
approximate vicinity of the root would, in most cases,
suffice. Many more cases involving different combinations
of parameters were then studied using this algorithm, which
led to the useful conclusions presented in [6] and [7].

V. CONCLUSIONS

Davidenko’s method is a reduction of the
Newton—Raphson numerical method for solving n-coupled
nonlinear algebraic equations into a set of » simultaneous
first-order differential equations in a dummy variable. In
this paper, we have shown the usefulness of this method for
problems of electromagnetic-wave propagation in multi-

where R,, i=1,...,8 and k,, /=2,3,4, are complex func-
tions of vy, w, the semiconductor’s parameters and the
dielectric constants of the other four regions. D;, D,, and
D, are the layer thicknesses (Fig. 2).

Equation (19) was solved using Davidenko’s method.
The coupled differential equations (18) were solved using
RKF45—a subroutine for solving initial value problems in
ODE’s which is based on Runge-Kutta formulas devel-
oped by E. Fehlberg in 1970 and implemented by L. F.
Shampine and H. A. Watts in 1974 [1]. The subroutine and
the accompanying computer program used to perform the
calculations were written in FORTRAN language.

ek“D3<R5ek3D2 + Rée*k3D2) + e *aDs (R7e"3D2 + Rge_k302)

—0 (19)

layer waveguiding structures where one of the layers is
gyroelectric and lossy. However, very similar dispersion
relations are obtained when a gyromagnetic medium is
used instead, as well as in more complicated problems
which could be modeled using combinations of layered
geometries with or without gyrotropic regions. An example
of this can be found in the analysis of open dielectric
waveguides for millimeter and optical wavelengths [11].

The method was shown to be particularly useful when -
losses are included and is recommended for those lossless
problems in which the use of Newton’s method proves
unsatisfactory.
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