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Abstract —Davidenko’s method is a reduetion of Newton’s method for

the uumerical solution of n-coupled nonlinear algebraic equations into

n-coupled first-order differential equations in a dummy variable. This

atgoritbrn is usefof for the solution of dispersion relations of electrom~-

netic waves propagating in lossy waveguiding structures, particularly layered

geometries containing one or more gyrotropic layers. In this class of

problems, Newton-based uumerical teehuiques are not always satisfactory

aud Davidenko offers an aftemative wbieb is efficieut and refiable and

which relaxes the extent of the restriction placed on the initiaf guess to be

sufficiently close to the solution. Presented are Davidenko’s method, its

application to lossy-waveguide dispersion relations, and an example where
the algorithm was applied successfully.

I. INTRODUCTION

m ROBLEMS DEALING with electromafmetic-wave .

r propagation in multilayered media usu~ly require

numerical solutions of the dispersion relation which leads

to the modal spectrum ( Q – @ diagram) of the waveguiding

geometry being studied. These dispersion relations, al-

though in general are complicated expressions, are also

mathematically well behaved. That is, in the frequency

intervals of interest, they are smooth and have smooth

derivatives except at a finite number of points. Therefore,

the use of simple and well-developed numerical techniques

such as Newton’s method and others [1] suffices in many

cases of interest.

Complications can arise, however, when the need to

include losses in the mathematical formulation of the prob-

lem make the dispersion relation a complex transcendental

equation in a complex variable. In this case, an extension

of Newton’s method into the two-dimensional case could,

in principle, be used.

Indeed, programs based on Newton’s method are avail-

able [1], [2] for the solution of n nonlinear algebraic

equations in n unknowns such as those from the IMSL

library [3].

These methods, however, do not always produce satisfac-

tory results. The author has found empirically that this is

particularly so when the multilayer structure under study

includes gyrotropic layers, i.e., gyroelecttic, such as a

solid-state plasma (semiconductor or metal), or
gyromagnetic, such as a ferrite material [4]-[7].
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In this paper, an alternative method is presented which,

although expandable to the n-dimensional case, has proven

very successful when n = 2, namely, in the case of a

complex transcendental dispersion relation in a complex

variable. The method is generally attributed to Davidenko

[8], and its usefulness has recently been brought to the

attention of the chemical engineering community by W. E.

Schiesser [9].

No attempt is made here to find the reasons for the

failure of other algorithms in the class of problems men-

tioned above or to make a rigorous comparison between

them and Davidenko’s. Davidenko’s method is simply re-

commended here whenever readily available routines based

on Newton or quasi-Newton methods fail.

II. DAVIDENKO’S METHOD

The basic idea behind Davidenko’s method is to reduce

Newton’s method for a system of n nonlinear algebraic

equations in n unknowns to a set of n first-order ordinary

differential equations (ODE’s) in a dummy variable t.

The basic ideas underlying Davidenko’s method can best

be explained by considering. the one-dimensional case [9].

From a practical point of view, it must be said that the

complications inherent in the use of this algorithm over,

say, Newton’s method are only justified in the case of two

or more systems of equations, In the one-dimensional case,

root-finders based on derivative-free algorithms such as the

secant or the bisection methods are faster and easier to

implement and many times even preferable to Newton’s

method.

Let

f(x)=o (1)

be a nonlinear algebraic equation in the variable x. New-

ton’s method applied to this equation is simply

C&(x.) Axn= ‘f(x.)

dx
(2)

where Ax. is a correction term for x ~

X.+l=xa + Ax. (3)

and n denotes the iteration number. That is, we expect that

the point x.+ ~ is closer to the solution than the point x..

Substituting (3) in (2), we obtain the more familiar form of
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Fig. 1. Starting at a certain point .x., Newton’s method gives us x.+ ~.
However, as in the case illustrated here, a successive application of
Newton’s method does not take us nearer the solution but to a point
(x. + ~) farther away. In other words, the algorithm does not converge
unless our initiaf guess happens to be in a region very close to the
solution,

Newton’s method

f(xn)
x n+l

= ‘n – df(xn)/dx

or

df(xn) O–f(xn)— .
dx Xn+l– Xn “

(4)

(5)

Equation (5) is just the equation of a straight line

through the points (x., f (xn )) and (x. + ~,O). In other words,

the next point in the iteration process, i.e. x.+ ~, is taken to

be the intersection of the straight line tangent to f(x) at

the point x. with the x-axis (see Fig. 1). Hence, Newton’s

algorithm has a step size. Ax. defined by (2).

However, as is the case of Fig. 1, the initial guess may

lay outside the region where Newton’s method converges.

Or, in other words, the correction term Ax. may be

excessive for the initial guess point chosen because

df (x~)/dx (the Jacobian determinant in the n-dimensional

case) is too small,., as indicated by (4). This restriction

placed on the initial guess of having to lie in a region

sufficiently small around the solution can be relaxed if we

reduce the size of the correction Ax. by including a factor

c in (2), i.e.,

where O<c<l

df(x.)
~Axn=–cf(xJ (6)

Rewriting this equation as

Ax. _ f(xn)——
6 df (xn)/dx

(7)

and taking the limit when c ~ O, Ax. is then replaced by a

differential correction term, assuming that f(x) is continu-

ous in the vicinity of x.. That is, (7) becomes (relabeling c

as dt )

dx f(x).—
dt = df/dx

(8)

where t is now a scalar independent variable which is

introduced merely to construct the algorithm and has no

basis in the original problem, Equation (l).

With these considerations in mind we can now go back

to Fig. 1, where we see that we have devised a way to

approach a root of f(x) = O from an initial guess (the

initial condition x(0) of differential equation (8)) in infini-

tesimal steps of size dx corresponding to increments dt of

the dummy variable t,arriving at the root after a long

“time” t, i.e., for t+ m. Thus, the original problem f(x)

= O is a particular case of (8) for t+ m. That is, the value

of x which satisfies f(x) = O also satisfies (8) for t - co.

Indeed, from(8), we see that

dx f(x) dx.—
dt = – df/dx d(lnf)

which implies that

f(x) =Ae-’

A being an integration constant. For t ~ co, we have

f(x) = o.

Equation (8) can be extended to the n-dimensional case,

namely,

dx

dt =
-(J)-if(x) (9)

where J is the Jacobian matrix for the n nonlinear alge-

braic set of equations in n unknowns

f,(xl, x2... xn)=o

f2(x1, x2... xn)=o

fn(x,, x2... xn)=o

or, in matrix form,

f(x)=o

with x = (xl, Xz,..., x.)~, where T stands for transposed

matrix.

Equation (9) is the basic form of Davidenko’s method

and can be considered as a system of n initial-value

ordinary differential equations that can be integrated sub-

ject to an initial condition x(O). This initial condition

vector is the counterpart of the initial trial solution in

Newton’s method [5], [9].

From the point of view of the implementation of this

algorithm into a computer program, it must be noted that
there exist many successful algorithms and published com-

puter programs available [1]–[3], [9] for solving systems of

first-order ordinary differential equations. The asymptotic

solutions at t+ cc could be found to the desired degree of

precision by comparing the difference between the results

of integration up to two consecutive intervals, i.e., the

quantity Ix(t + At)– x(t )[ to a number 8 representing the

desired precision. When

lx(t+At)–x(t)l<8

the integration can be stopped.

It must be added here that the algorithm has exponential

convergence with respect to t [9].
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111. APPLICATION OF DAIVDENKO’S METHOD TO A

LossY ELECTROMAGNETIC WAVE

PROPAGATION PROBLEM

The dispersion relation of a lossy waveguiding system, a

complex transcendental equation with complex roots, can

be generally expressed as

F(ti; y)=o (lo)

with y = a + j~, where the unknowns are a and ~, the real

and imaginary parts of the propagation constant y, respec-

tively.

We wish to solve (10) for different values of the parame-

ter a, the angular frequency. Equation (10) can be treated

as a set of two nonlinear algebraic equations in two un-

knowns by writing it as the set

Re[F(~; y)]= G(ti; a,~)=O

Im[F(ti; y)]- H(u; a,/3) =0. (11)

In this case, it is possible to express the Jacobian matrix of

the system and its inverse in closed form, since the disper-

sion function F( u; y) is an analytic complex function on

the y-plane except at a finite number of points. The

Cauchy–Riemann relations are then satisfied, that is, from

(11)

G.= Hp

GB=– Ha (12)

where G. = dG/ da, etc. The Jacobian matrix is

H Gfl
J= :

~ Hfi

or, using (12)

IIGa
J= _G

Gb

~Ga”
(13)

On the other hand, using the properties of analytic func-

tions (12), we have

aF
—~FY=G&+ jHm=Ga–jGp.
ay (14)

That is

G.= Re[Fy]

G8=– Im[Fy]. (15)

From (13) and (15), the determinant of the Jacobian matrix

is

det J= G~+G~=lFy12 (16)

and, using (15) and (16), the inverse Jacobian matrix is

(17)

We can now write the formal expression of Davidenko’s

method (9) with

x=(a, j3)T

Fig. 2. Five-region canonicat waveguiding structure whose dispersion
relation was solved using Davidenko’s method.

and

f=(G, H)T

namely,

M=-J-1[9
or, using (11) and (17)

da
~(Re[F]Re[Fy]+Im[ ~] Im[F7])

dt = – 1FY12

(18)

Equation (18), a system of two coupled first-order ODE’S?

is the expression of the problem F( ti; y) = O (10) in terms

of Davidenko’s algorithm. The solution of (18) for t -+ co

(large t) will give us a and ~ for a given frequency u to the

desired precision. Notice that the right-hand side of both

equations need only be expressed in terms of the dispersicm

function F and its derivative with respect to y, F7. Fur-

thermore, <Y, althougln a complicated expression, can al-

ways be written in closed form. The real and imaginary

parts of F and FY need not be found explicitly since they

will be calculated numerically. Equation (18) can then be

solved using any quality integrator with automatic step-size

adjustment [1]–[3], [9].

IV. EKAMPLE OF THE USE OF DAVIDENKO’S

METHOD

Davidenko’s method was tested in the case of a five-layer

waveguiding structure where one of the layers is gyro-

electric. The following example is included here for the

sake of completeness although it has already been pre-

sented in [7]. It is hoped, however, that the reader will find

its inclusion here convenient and the comments on the

method’s practical implementation useful. For more details

on the problem studied see [6] and [7].

Fig. 2 shows ‘a diagram of the geometry studied. It is

assumed infinite in the y- and z-directions. Propagation of

electromagnetic waves is in the z-direction. The gyro-

electric layer is pres~med to be a semiconductor biased by

a magnetic field HO along the y-direction. It is char-
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Fig, 3.
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Sample dispersion diagram for the five-region canonicaf stnlc-

~ure. Nonr~ciprocal device isolation. Forward profiagation. Parameters:
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–1~(o)= 13, e4_4, cl =63= {5— ~

Dl=50ym, D2=D3=100 pm.

acterized by the dielectric tensor

where ~, ~, and q are complex functions of frequency, the

biasing field, the carrier concentration, the dc dielectric

constant of the semiconductor and an imaginary term, the

carrier collision frequency, which accounts for the losses in

the semiconductor [6]. The other four regions in Fig. 2 are

isotropic dielectrics of different constants. The losses are

significant in this problem.

The dispersion relation is a complicated expression in

Ihe complex variable y = a + j~, the propagation constant.

It has the form [7]

Other algorithms for integration of (18) could be used as

well. See, for example, the papers by W. E. Schiesser [9]

and by P. T. Boggs [10].

A sample calculation of the roots of (19) as a function of

frequency is presented in Fig. 3 for the case in which a

dielectric (Ed =4) layer is placed at a certain distance from

the semiconducting layer. Both regions are surrounded by

air. The parameters characterizing the semiconductor are

given in the figure caption. Their physical significance is

explained in [6].

Three modes or branches are depicted in the figures.

Higher order thickness modes were found in the region

fJ1) < f < fm and above fJ2) [61- These are not included in
the figure. Each of the branches has an attenuation con-

stant and a phase constant. The straight line labeled k.

corresponds to the electromagnetic-wave propagation in

vacuum.

The problem was solved rapidly and efficiently using

Davidenko’s method. Earlier attempts at solving this prob-

lem using a quasi-Newton algorithm from the IMSL library

[3] (Muller’s method) were unsuccessful because of the

great difficulty of finding roots in most regions of the

w – j3 diagram. Furthermore, the initial guess was very

critical, and a great deal of time was spent trying different

ones in order to calculate only one point in the u – ~

diagram. These problems were completely eliminated with
Davidenko’s method, when only one initial guess in the

approximate vicinity of the root would, in most cases,

suffice. Many more cases involving different combinations

of parameters were then studied using this algorithm, which

led to the useful conclusions presented in [6] and [7].

V. CONCLUSIONS

Davidenko’s method is a reduction of the

Newton–Raphson numerical method for solving n-coupled

nonlinear algebraic equations into a set of n simultaneous

first-order differential equations in a dummy variable. ln

this paper, we have shown the usefulness of this method for

problems of electromagnetic-wave propagation in multi-

(ek~D3 Rle %% + R2e
) (3

–k3D2 ●e–k4Ds R ek3D2 + R4e–k3D2

F(@; y)=e-2k2D, – )

(

=0 (19)
ekd% R5e &% + Rde

)[
–kzD2 _+e-k4D3 R7ek3Dz + R8e–k3D2

1

where R,, i = 1,.. .,8 and kl, 1 = 2,3,4, are complex func-

tions of y, u, the semiconductor’s parameters and the

dielectric constants of the other four regions. Dl, D2, and

D3 are the layer thicknesses (Fig. 2).

Equation (19) was solved using Davidenko’s method.

The coupled differential equations (18) were solved using

RKF45 —a subroutine for solving initial value problems in

ODES which is based on Runge–Kutta formulas devel-

oped by E. Fehlberg in 1970 and implemented by L. F.

Shampine and H. A. Watts in 1974 [1]. The subroutine and

the accompanying computer program used to perform the

calculations were written in FORTRAN language.

layer waveguiding structures where one of the layers is

gyroelectric and Iossy. However, very similar dispersion

relations are obtained when a gyromagnetic medium is

used instead, as well as in more complicated problems

which could be modeled using combinations of layered

geometries with or without gyrotropic regions. An example

of this can be found in the analysis of open dielectric
waveguides for millimeter and optical wavelengths [11].

The method was shown to be particularly useful when

losses are included and is recommended for those lossless

problems in which the use of Newton’s method proves

unsatisfactory.
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